Welcome!

Mobile IoT Authors: Pat Romanski, Derek Weeks, Mark Herring, Elizabeth White, Liz McMillan

Related Topics: @ThingsExpo, Mobile IoT, @DXWorldExpo

@ThingsExpo: Blog Post

Connected Teams, Connected Code, and the Connected Device By @Anders_Wallgren | @ThingsExpo #IoT

The Complexities of IoT Development

In my previous post I discussed the challenges of IoT software delivery as they relate to managing the complexities of integrating three distinct development pipelines comprising the different components of the IoT software. These are:

  1. The embedded software in the device itself – for example, software embedded in a car.
  2. The big-data backend application used to store and analyze the real-time data accumulated from the different devices.
  3. The mobile app – used by end users to control the device.

Each one of these software components is being developed and delivered by a separate team (or in many cases, several teams). In this article, I’d like to take a closer look at some of the distinct characteristics of each team involved in the production of IoT products, and the strains they put on the IoT delivery chain.

Similar. But Different.
“There’s no I in
Team”. Sure, we’re all in this together: working hard to get the next big thing in the IoT space to market. And we know we depend on each other for our stuff to work.. But — streamlining your IoT development processes across different teams is no easy task.

We need to be aware of the fact that each of the development team (Embedded, Backend, Mobile) uses different technologies, tools, stacks, deployment patterns and delivery practices in their work. Their day-to-day tasks and workflows are different.

Let’s take a closer look at what it means to be an engineer in each one of those teams:

Embedded Software Team

Printed Circuit Board (PCB)

The embedded software must take inputs from sensors to understand the conditions of the physical world environment. Based on the computations of this input, the program then performs certain tasks – for example, activating or modulating a set of actuators to produce the desired behavior.

Consider the simple scenario of pressing the gas pedal on a hybrid car. What seems like a very simple operation, in fact involves thousands of decisions made in less than a second. The engine’s Electronic Control Unit (ECU) receives the request to accelerate. It then collects various data, such as how hard the accelerator is pressed, the ambient temperature, the current speed, the current gear that the car is in, whether the car is on an incline or decline, whether the car is in Eco mode or Sport mode, whether the battery level is high or low, whether there is any slippage in any wheels, and many, many more. After collecting the data, the program performs calculations to send signals to the transmission ECU to adjust the gear if necessary, to the gasoline engine ECU to start the engine if needed, to the hybrid engine ECU to coordinate the power delivery from the electric motor and the gasoline engine efficiently, and so on. After all of this – the car speeds up, but the computation continues. The engine’s ECU measures any change in the pressure applied on the gas pedal. If the driver eases on the accelerator, the whole process of collecting data, making decisions, and sending signals to different ECUs and actuators will happen again, to adjust speed, energy use and performance.

The tools of the trade:
This team works predominantly with Real Time Operation System (RTOS) and works collaboratively with the Mechatronics (mechanical and electronics) team. The most common programming language for this team is C/C++.

Given the nature of what the program must do, the software team uses model-based system development. These are specialized tools (provided by companies such as MathWorks, Vector, D-Space) that are often used to facilitate this kind of programming. Meanwhile, on the Mechatronics side, the hardware team must work on the mechanical and electrical design, using specialized tools from Siemens, PTC, Dasault, IBM, and the like. In the model-based system development, the software team can initially work independently of the hardware by using emulation and simulation. This kind of test is called Simulation in the Loop (SIL). Once the hardware module is ready the software is injected to it and real integration test is performed – called Hardware in the Loop (HIL).

The Mechatronics team uses a Product Lifecycle Management (PLM) tool to manage the mechatronics development, test, and verification. The Embedded Software team uses its own Application Lifecycle Management (ALM) and Continuous Delivery (CD) tools to manage the software development, test, and release.

Keep in mind, the different processes must interact with each other at certain points, and both teams must do their best to reduce the friction between the two completely different processes for the hardware and software development lifecycles.

Big Data Software Team

Global Communication Concept Digitally Generated Image

This team is tasked with processing the massive amounts of real-time data, and is also mostly concerned with horizontal scalability – to be able to support data throughput as more devices are sold. The software produced by this team is typically deployed in data center and it is often replicated in several locations for redundancy and low-latency. As the variety of the IoT devices being sold increases, the backend software must handle all of the variations in the flavors of the product/services offered to customers, and their corresponding SLAs.

The tools of the trade
This team often uses Agile development methodologies to support the need for frequent feature enhancements and software updates. Instead of batching all changes into one ‘mega’ release, the development work is divided between small teams who work in short Sprints, and incremental changes to the code and new features are being deployed fairly frequently. This team, too, often uses ALM or Agile tools to support development.

To enable the cadence of deployments and streamline their delivery process, this team uses a Software Delivery Pipeline solution that covers accelerated builds, preflight, continuous integration, continuous test, and smart deploy. This tools also manages the provisioning, configuration and management of the IT infrastructure across the different development, QA, staging and production environments.

The backend software is the ‘brain’ of the IoT service – and IoT devices are always connected. This mandates that the deployments to Production are done in an extremely reliable manner, to ensure there’s no service interruption. To ensure smooth operations, this team often uses DevOps Automation and Continuous Delivery solutions to facilitate the critical deployment process.

Mobile App Team

multitasking in hands

The culture of Mobile App development started out with startups and individual developers, who often perfected their code in the ‘hip’ coffee shops in San Francisco, Palo Alto, San Diego, Austin, and Manhattan. These programmers often do not require office space, and seldom do they have an IT team to support them. Instead, they are more inclined to use modern SaaS solutions designed to facilitate the development, continuous integration, testing and release of their app. These days, due to the strong trend in IoT, many large enterprises (such as Automotive companies) hire these “coffee shop” programmers. Still, despite the fact they now work in the more formal environment, their work habits and their preferences regarding tool chains have not changed.

The tools of the trade
The most popular programing languages among mobile app programmers are Java and Swift. Mobile developers are comfortable integrating several SaaS-based mobile app development tools to realize their development environment and processes. They can store their source code in GitHub, use SauceLab for mobile app testing and AppDynamics for mobile app performance test and monitoring. They use Ship.io for continuous integration, continuous test, and continuous release to AppStore.

The frequency of updates for mobile apps is also extremely high, driven by the competitive nature of the app landscape and the ability to optimize the application based on the available real-time feedback on the app’s usage.

Connecting It All

Convergence Ahead Road Sign

As we’ve seen, each team required to deliver on an IoT product is inherently different from the others. Because of this, friction naturally occurs when the three teams must coordinate their integration and system test. If this friction – and possible failure points between the separate processes – is not minimized, releases would inevitably get delayed, and the product’s quality will suffer.

In addition to the common Agile development practices, and a Continuous Delivery and DevOps platform requirements, there are unique requirements from a tooling perspective to enable efficient and streamlined IoT app delivery. What is needed is a single platform that can address the three different domains: a Multi-Domain Continuous Delivery (MDCD) platform capable of eliminating the friction and streamline the end-to-end process.

This solution must be able to integrate and orchestrate the work transitions or handoffs between teams throughout the product’s lifecycle. In addition, it must have the ability to track the artifacts as it moves from one domain to the other, and keep track of the artifact as it moves in and out of the different domains, the outcome of each processing, and who performs the work at different stages.

Do you know of anything like that? :)

More Stories By Anders Wallgren

Anders Wallgren is Chief Technology Officer of Electric Cloud. Anders brings with him over 25 years of in-depth experience designing and building commercial software. Prior to joining Electric Cloud, Anders held executive positions at Aceva, Archistra, and Impresse. Anders also held management positions at Macromedia (MACR), Common Ground Software and Verity (VRTY), where he played critical technical leadership roles in delivering award winning technologies such as Macromedia’s Director 7 and various Shockwave products.

@ThingsExpo Stories
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were repetitive. In addition, the paper-based process used to measure patient health metrics was laborious, not in real-time and sometimes error-prone. In their session at 21st Cloud Expo, Sean Finnerty, Executive Director, Practice Lead, Health Care & Life Science at REAN Cloud, and Dr. S.P.T. Krishnan, Principal Architect at REAN Cloud, discussed how they built...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
The 22nd International Cloud Expo | 1st DXWorld Expo has announced that its Call for Papers is open. Cloud Expo | DXWorld Expo, to be held June 5-7, 2018, at the Javits Center in New York, NY, brings together Cloud Computing, Digital Transformation, Big Data, Internet of Things, DevOps, Machine Learning and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding busin...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
22nd International Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, and co-located with the 1st DXWorld Expo will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud ...
22nd International Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, and co-located with the 1st DXWorld Expo will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud ...
DevOps at Cloud Expo – being held June 5-7, 2018, at the Javits Center in New York, NY – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Among the proven benefits,...
@DevOpsSummit at Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, is co-located with 22nd Cloud Expo | 1st DXWorld Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait...
Cloud Expo | DXWorld Expo have announced the conference tracks for Cloud Expo 2018. Cloud Expo will be held June 5-7, 2018, at the Javits Center in New York City, and November 6-8, 2018, at the Santa Clara Convention Center, Santa Clara, CA. Digital Transformation (DX) is a major focus with the introduction of DX Expo within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive ov...
SYS-CON Events announced today that T-Mobile exhibited at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. As America's Un-carrier, T-Mobile US, Inc., is redefining the way consumers and businesses buy wireless services through leading product and service innovation. The Company's advanced nationwide 4G LTE network delivers outstanding wireless experiences to 67.4 million customers who are unwilling to compromise on qua...
SYS-CON Events announced today that Cedexis will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Cedexis is the leader in data-driven enterprise global traffic management. Whether optimizing traffic through datacenters, clouds, CDNs, or any combination, Cedexis solutions drive quality and cost-effectiveness. For more information, please visit https://www.cedexis.com.
SYS-CON Events announced today that Google Cloud has been named “Keynote Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Companies come to Google Cloud to transform their businesses. Google Cloud’s comprehensive portfolio – from infrastructure to apps to devices – helps enterprises innovate faster, scale smarter, stay secure, and do more with data than ever before.
SYS-CON Events announced today that Vivint to exhibit at SYS-CON's 21st Cloud Expo, which will take place on October 31 through November 2nd 2017 at the Santa Clara Convention Center in Santa Clara, California. As a leading smart home technology provider, Vivint offers home security, energy management, home automation, local cloud storage, and high-speed Internet solutions to more than one million customers throughout the United States and Canada. The end result is a smart home solution that sav...
SYS-CON Events announced today that Opsani will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Opsani is the leading provider of deployment automation systems for running and scaling traditional enterprise applications on container infrastructure.
SYS-CON Events announced today that Nirmata will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Nirmata provides a comprehensive platform, for deploying, operating, and optimizing containerized applications across clouds, powered by Kubernetes. Nirmata empowers enterprise DevOps teams by fully automating the complex operations and management of application containers and its underlying ...
SYS-CON Events announced today that Opsani to exhibit at SYS-CON's 21st Cloud Expo, which will take place on October 31 through November 2nd 2017 at the Santa Clara Convention Center in Santa Clara, California. Opsani is creating the next generation of automated continuous deployment tools designed specifically for containers. How is continuous deployment different from continuous integration and continuous delivery? CI/CD tools provide build and test. Continuous Deployment is the means by which...