Mobile IoT Authors: Pat Romanski, Yeshim Deniz, Dana Gardner, Elizabeth White, Liz McMillan

Related Topics: @ThingsExpo, Mobile IoT, @CloudExpo

@ThingsExpo: Blog Feed Post

Internet of Things and Mobile Communications By @LMacVittie | @ThingsExpo [#IoT]

There's a lot of focus on the performance of mobile communications given the rate at which mobile is outpacing legacy PC

Optimizing IoT and Mobile Communications with TCP Fast Open

There's a lot of focus on the performance of mobile communications given the incredible rate at which mobile is outpacing legacy PC (did you ever think we'd see the day when we called it that?) usage. There's been tons of research on the topic ranging from the business impact (you really can lose millions of dollars per second of delay) to the technical mechanics of how mobile communications is impacted by traditional factors like bandwidth and RTT. Spoiler: RTT is more of a factor than is bandwidth in improving mobile app performance.

The reason behind this isn't just because mobile devices are inherently more resource constrained or that mobile networks are oversubscribed or that mobile communications protocols simply aren't as fast as your mega super desktop connection, it's also because mobile apps (native ones) tend toward the use of APIs and short bursts of communication. Grab this, check for an update on that, do this quick interaction and return. These are all relatively small in terms of data transmitted, which means that the overhead from establishing a connection can actually take more time than the actual exchange. The RTT incurred by the three-step handshake slows things down.

That same conundrum will be experienced by smart "things" that connect for a quick check-in to grab or submit small chunks of data. The connection will take longer than the data transmission, which seems, well, inefficient, doesn't it?

Apparently other folks thought so too, and hence we have in Internet Draft form a proposed TCP mechanism to alleviate the impact of this overhead known as "TCP Fast Open".

TCP Fast Open Draft @ IETF

This document describes an experimental TCP mechanism TCP Fast Open (TFO). TFO allows data to be carried in the SYN and SYN-ACK packets and consumed by the receiving end during the initial connection handshake, and saves up to one full round trip time (RTT) compared to the standard TCP, which requires a three-way handshake (3WHS) to complete before data can be exchanged. However TFO deviates from the standard TCP semantics since the data in the SYN could be replayed to an application in some rare circumstances. Applications should not use TFO unless they can tolerate this issue detailed in the Applicability section.

The standard relies on the existence of a cookie deposited with the client that indicates a readiness and willingness (and perhaps even a demand) to transmit some of the data in the initial SYN and SYN-ACK packets of the TCP handshake. The cookie is generated by the app (or gateway, the endpoint) upon request from the client. There's no special TCP behavior on this request, so it seems likely this would be handled during the "initial setup" of a thing. On subsequent communications in which the TFO cookie is present, the magic happens. The app (or gateway, the endpoint) recognizes the cookie and is able to grab the data and start processing - before the initial handshake is even complete.

While the use of 'cookies' is more often associated with HTTP, it is also found within the realm of TCP (SYN cookies are a popular means of attempting to detect and prevent SYN flood attacks).

Needless to say, such a mechanism is particularly of interest to service providers as their networks often act as gateways to the Internet for mobile devices. Reducing the time required for short-burst communications ultimately reduces the connections that must be maintained in the mobile network, thus relieving some pressure on the number of proxies - virtual or not - required to support the growing number of devices and things needing access.

A word of caution, however. TFO is not designed for nor meant to be used for every application. The draft clearly spells out applicability as being to those applications where initial requests from the client are of a size that they are less than the TCP MSS. This is because otherwise the server still has to wait until after the handshake completes to gather the rest of the data and formulate a response. Thus any performance benefit would be lost. Proceed with careful consideration, therefore, in applying the use of TCP Fast Open but do consider it, particularly if data sets are small, as may be the case with things reporting in or checking for updates.

tcp fast open

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...