Welcome!

Mobile IoT Authors: Zakia Bouachraoui, Pat Romanski, Yeshim Deniz, Carmen Gonzalez, Liz McMillan

Related Topics: @CloudExpo, @DXWorldExpo, @ThingsExpo, @DevOpsSummit

@CloudExpo: Blog Feed Post

Beyond Big Data and @Benioff’s “AI Spring” to the Dawn of Dataware By @MattMcIlwain | @CloudExpo [#BigData]

Big Data, AI, Machine Learning, Hadoop, Predictive Analytics — we hear these terms every day

This article was authored by Matt McIlwain and was originally published on Medium. For more of Matt's writing, you can follow him here!

Guest Post: Beyond Big Data and Benioff’s “AI Spring” to the Dawn of Dataware

Big Data, AI, Machine Learning, Hadoop, Predictive Analytics — we hear these terms every day from companies such as Cloudera, Trifacta and Dato (formerly GraphLab) that are securing many millions in financing. I believe that 2015 will be the year when the conversation moves from Big Data to the Dataware stack. Over the past twelve months we have seen a lot of companies across the big data spectrum emerge and while the language can be the same, there are clear product categories that have emerged which describe the market opportunity and future growth.

This is the Dataware stack. Dataware is the combination of infrastructure, data intelligence systems that apply algorithms and machine learning to the data, and the applications enabled by data intelligence that are changing how we do business and how we live our lives every day. And startups dominate the Dataware landscape.

We are at the very start of the data revolution. The consumer world got there first. Apps that know who we are and where we are and some other data points about us help us do a myriad of things every single day. On the business side, there has always been a lot of data but now there is not only an incredible growth in that data, there is an active appreciation beyond business analysts for using data in near real time to improve products and services.

What we are seeing now is a huge shift that is infusing data into every piece of our lives and making every app and service smarter. We have started to see this blending of data with what were rather static services with recent announcements from companies such as Salesforce.com and Workday.

The Dataware Framework is how I look at this new world of software in the age of big data. Dataware includes an Agile Data Stack of components for modern data applications and services and a Continuous Data Loop that brings usable data in and out of the stack. The Agile Data Stack has three layers including the underlying enabling infrastructure, the data intelligence layer, and the data-infused applications and services that benefit from those underlying components. The Continuous Data Loop is the representation of how data is continually being ingested, cleaned, visualized, recycled and refined and put back into the mix for future predictions so that modern applications can deliver intelligence in increasingly dynamic and personalized ways.

While most traditional IT customers and vendors are making moves to deal with the growth of big data — Dataware is largely the territory of startups and early adopters across every layer of the data stack.

At first, new sources of data and data systems will enhance and extend existing technologies such as databases, data warehouses and business intelligence tools. The new technologies will help unlock value in legacy systems and structured data silos along with new types and structures of data sources. But, as the Dataware infrastructure, intelligence and methodologies mature, data-infused applications and services will be built from scratch to disrupt industries and business processes.

Dataware will introduce net new processes and intelligence into the world’s oil exploration, research for cancer cures, advertising optimization, and yes, choosing movies and friends.

Here are four key principles fundamental to understanding the impact that Dataware will have on the technology industry.

  1. Big Data and traditional structured data work together as a “hybrid” of inputs to feed data-infused applications and services and will complement each other as these applications get built.
  2. Enabling infrastructure, including new types of databases (Cassandra, MongoDB, Hbase,) and data execution “engines” (Hadoop/Map Reduce, Spark), are primarily enablers and less likely to be where value is captured (when compared to the relational database era) in the Agile Data Stack.
  3. The Data Intelligence layer is where data, algorithms, data models and “pipelines” intersect to turn data into insights. More value will be delivered and captured in this layer than historic data “middleware” and BI tools have captured in the past. Companies focused on the enabling infrastructure today are likely to try and move up the stack into the data intelligence layer.
  4. Data driven applications and services are distinguished across two dimensions. First, are the data insights being delivered to a machine or a human? Second, are data insights/predictions being delivered in real-time or a batch/offline mode? Real-time insights delivered directly to a human end-user are the most challenging ones to run at scale. And, they are the most challenging systems to create a continuous feedback loop that delivers both instant gratification to the customer and compelling insights to the service provider.

It’s clear that not every company in the big data arena will succeed. There will be a lot of failures and there is already a lot of confusion around language and markets. The companies that will succeed will make themselves a core component of the Agile Data Stack or the Continuous Data Pipeline and will build their footprint from there.

Dataware is one way to frame the major areas of opportunity in what Mark Benioff recently called the “AI Spring” or what Microsoft is promoting with services like AzureML. But many questions remain including where the most promising markets exist, when those markets will be ready for rapid adoption and who amongst startup-ups and incumbents will emerge as winners and losers. What we do know is that Dataware will dramatically impact the technology industry over the next decade.

Matt McIlwain is an investor in Seattle with Madrona Venture Group who invests in enterprise, cloud and Dataware companies. Dato is one of his investments.

Read the original blog entry...

More Stories By Skytap Blog

Author: Noel Wurst is the managing content editor at Skytap. Skytap provides SaaS-based dev/test environments to the enterprise. Skytap solution removes the inefficiencies and constraints that companies have within their software development lifecycle. As a result, customers release better software faster. In this blog, we publish engaging, thought provoking stories that revolve around agile enterprise applications and cloud-based development and testing.

IoT & Smart Cities Stories
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in ...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...