Welcome!

Wireless Authors: Peter Silva, Kevin Benedict, Carmen Gonzalez, Liz McMillan, Yeshim Deniz

Related Topics: DevOps Journal, Java, Wireless, Linux, Web 2.0, Big Data Journal, @ThingsExpo

DevOps Journal: Article

Using Docker For a Complex "Internet of Things" Application

The goal of any DevOps solution is to optimize multiple processes in an organization

View Aaater Suleman's @ThingsExpo sesion here

The goal of any DevOps solution is to optimize multiple processes in an organization. And success does not necessarily require that in executing the strategy everything needs to be automated to produce an effective plan. Yet, it is important that processes are put in place to handle a necessary list of items.

Flux7 is a consulting group with a focus on helping organizations build, maintain and optimize DevOps processes. The group has a wide view across DevOps challenges and benefits, including:

  • The distinct challenge of a skills shortage in this area and how organizations are coping to meet demands with limited resources.
  • The technical requirements: From stacks to scripts, and what works.
  • The practical and political challenges: Beyond the stacks and the human element is a critical success factor in DevOps.

Recently at Flux7, we developed an end-to-end Internet of Things project that received sensor data to provide reports to service-provider end users. Our client asked us to support multiple service providers for his new business venture. We knew that rearchitecting the application to incorporate major changes would prove to be both time-consuming and expensive for our client. It also would have required a far more complicated, rigid and difficult-to-maintain codebase.

We had been exploring the potential of using Docker to set up Flux7's internal development environments, and, based on our findings, believed we could use it in order to avoid a major application rewrite. So, we decided to use Docker containers to provide quick, easy, and inexpensive multi-tenancy by creating isolated environments for running app tier multiple instances for each provider.

What is Docker?
Docker provides a user-friendly layer on top of Linux Containers (LXCs). LXCs provide operating-system-level virtualization by limiting a process's resources. In addition to using the chroot command to change accessible directories for a given process, Docker effectively provides isolation of one group of processes from other files and system processes without the expense of running another operating system.

In the Beginning
The "single provider" version of our app had three components:

  1. Cassandra for data persistence, which we later use for generating each gateway's report.
  2. A Twisted TCP server listening at PORT 6000 for data ingestion from a provider's multiple gateways.
  3. A Flask app at PORT 80 serving as the admin panel for setting customizations and for viewing reports.

In the past, we'd used the following to launch the single-provider version of the app:

12: nohup python tcp_server.py & # For firing up the TCP server.nohup python flask_app.py & # For firing up the admin panel

view rawsingle-provider-launch.sh hosted with ❤ by GitHub

Both code bases were hard coded inside the Cassandra KEYSPACE.

Our New Approach
While Docker is an intriguing emerging technology, it's still in the early stages of development. As might be expected, it has issues remaining to be resolved. The biggest for us was that, at this point, Docker can't support multiple Cassandra instances running on a single machine. Consequently, we couldn't use Cassandra to provide multi-tenancy. Another issue for us was that hosting multiple database instances on a single machine can quickly cause resource shortages. We addressed that by implementing the solution in a fairly traditional way for making an application multi-tenant. We used KEYSPACE as the namespace for each provider in the data store. We also made corresponding code changes to both the data ingestion and web servers by adding the keyspace parameter to the DB accesses. We passed the Cassandra KEYSPACE (the provider ID) to each app instance on the command line, which makes it possible to use custom skins and other features in the future. Thus, we were able to create a separate namespace for each provider in the data store without making changes to the column family schema.

The beauty of our approach was that, by using Docker to provide multi-tenancy, the only code changes needed to make the app multi-tenant were those described above. Had we not used Docker in this way, we'd have had to make major code changes bordering on a total application rewrite.

How We Did It

Docker diagram 1.jpg

First, we created a Docker container for the new software version by correctly setting up all of the environments and dependencies. Next, we started a Cassandra container. Even though we weren't running multiple instances of Cassandra, we wanted to make use of Docker's security, administrative and easy configuration features. You can download our Cassandra file from our GitHub here.We used a locally running container serving at PORT 9160 BY using this command:

1

docker run -d -p 9160:9160 -name db flux7/cassandra

view rawCassandra Container hosted with ❤ by GitHub

We then created a keyspace "provider1" using pycassaShell.

We fired up our two code bases on two separate containers like this:

12

docker run -name remote_server_1 -link db:cassandra -p 6001:6000 flux7/labs python software/remote_server.py provider1docker run -name flask_app_1 -link db:cassandra -p 8081:80 flux7/labs python software/flask_app.py provider1

view rawCode base launch in container hosted with ❤ by GitHub

Voila! We had a provider1 instance running in no time.

Automation
We found Docker-py extremely useful for automating all of these processes and used:

12345678910111213141516171819202122232425

# Yes. We love Python!def start_provider(provider_id, gateway_port, admin_port ):docker_client = docker.Client(base_url='unix://var/run/docker.sock'
version='1.6'
timeout=100) # start a docker container for consuming gateway data at gateway_portstart_command = 'python software/remote_server.py ' + provider_idremote_server = docker_client.create_container('flux7/labs', # docker image
command=start_command, # start command contains the keyspace parameter, keyspace is the provider_id
name='remote_server_' + provider_id, # name the container, name is provider_id ports=[(6000, 'tcp'),]) # open port for binding, remote_server.py listens at 6000docker_client.start(remote_server,
port_bindings={6000: ('0.0.0.0', gateway_port)},
links={'db': 'cassandra'}) # start a docker container for serving admin panel at admin_portstart_command = 'python software/flask_app.py ' + provider_idremote_server = docker_client.create_container('flux7/labs', # docker image
command=start_command, # start command contains the keyspace parameter, keyspace is the provider_id
name='admin_panel_' + provider_id, # name the container, name is provider_id
ports=[(80, 'tcp'),]) # open port for binding, remote_server.py listens at 6000docker_client.start(remote_server,
port_bindings={80: ('0.0.0.0',admin_port)},
links={'db': 'cassandra'})

view rawmulti-tenant-docker.py hosted with ❤ by GitHub

To complete the solution, we added a small logic to allocate the port for newly added providers and to create Cassandra keyspaces for each one.

Conclusion
In the end, we quickly brought up a multi-tenant solution for our client with the key "Run each provider's app in a contained space." We couldn't use virtual machines to provide that functionality because a VM requires too many resources and too much dedicated memory. In fact, Google is now switching away from using VMs and has become one of the largest contributors to Linux containers, the technology that forms the basis of Docker. We could have used multiple instances, but then we'd have significantly over allocated the resources. Changing the app also would have added unnecessary complexity, expense and implementation time.

At the project's conclusion, our client was extremely pleased that we'd developed a solution that met his exact requirements, while also saving him money. And we were pleased that we'd created a solution that can be applied to future customers' needs.

More Stories By Aater Suleman

Aater Suleman, CEO & Co-Founder at Flux7, is an industry veteran in performance optimization on servers and distributed systems. He earned his PhD at the University of Texas at Austin, where he also currently teaches computer systems design and architecture. His current interests are in optimizing DevOps and reducing cloud costs.

@ThingsExpo Stories
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...
Innodisk is a service-driven provider of industrial embedded flash and DRAM storage products and technologies, with a focus on the enterprise, industrial, aerospace, and defense industries. Innodisk is dedicated to serving their customers and business partners. Quality is vitally important when it comes to industrial embedded flash and DRAM storage products. That’s why Innodisk manufactures all of their products in their own purpose-built memory production facility. In fact, they designed and built their production center to maximize manufacturing efficiency and guarantee the highest quality of our products.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. Download Slide Deck: ▸ Here
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital business.
BSQUARE is a global leader of embedded software solutions. We enable smart connected systems at the device level and beyond that millions use every day and provide actionable data solutions for the growing Internet of Things (IoT) market. We empower our world-class customers with our products, services and solutions to achieve innovation and success. For more information, visit www.bsquare.com.
With the iCloud scandal seemingly in its past, Apple announced new iPhones, updates to iPad and MacBook as well as news on OSX Yosemite. Although consumers will have to wait to get their hands on some of that new stuff, what they can get is the latest release of iOS 8 that Apple made available for most in-market iPhones and iPads. Originally announced at WWDC (Apple’s annual developers conference) in June, iOS 8 seems to spearhead Apple’s newfound focus upon greater integration of their products into everyday tasks, cross-platform mobility and self-monitoring. Before you update your device, here is a look at some of the new features and things you may want to consider from a mobile security perspective.