Welcome!

Mobile IoT Authors: Liz McMillan, Zakia Bouachraoui, Elizabeth White, Yeshim Deniz, Dana Gardner

News Feed Item

Leti to Coordinate Four-Year EC Project Targeting A Complete European Supply Chain in Silicon Photonics

CEA-Leti today announced that it will coordinate a four-year project aimed at building a European-based supply chain in silicon photonics and speeding industrialization of the technology.

The PLAT4M (Photonic Libraries And Technology for Manufacturing) project will focus on bringing the existing silicon photonics research platform to a level that enables seamless transition to industry, suitable for different application fields and levels of production volume.

PLAT4M, which is funded by a European Commission grant of 10.2 million euros, includes 15 leading European R&D institutes and CMOS companies, key industrial and research organizations in design and packaging, as well as end users in different application fields to build the complete supply chain.

“Silicon with its mature integration platform has brought electronic circuits to mass-market applications – our vision is that silicon photonics will follow this evolution,” said Laurent Fulbert, Integrated Photonics Program Manager at CEA-Leti, coordinator of PLAT4M. “Upgrading existing platforms to become compatible with industrialization is now essential and this requires streamlining and stabilizing the design and process flows by taking into account design robustness, process variability and integration constraints. The PLAT4M partners bring a critical combination of expertise to the challenge of building a complete supply chain for commercializing silicon photonics in Europe.”

A surge in output of silicon photonics research in recent years has significantly boosted the potential for commercial exploitation of the technology. However, most of this R&D has been devoted to developing elementary building blocks, rather than fabricating complete photonic integrated circuits, which are needed to support large potential markets.

The PLAT4M consortium will make technologies and tools mature by building a coherent design flow, demonstrating manufacturability of elementary devices and process integration and developing a packaging toolkit. The project will validate the complete supply chain through application-driven test vehicles representing various application fields, such as telecom and datacom, gas sensing and light detection and ranging (LiDAR) and vibrometry. It also will focus on preparing the next-generation platform by setting up a roadmap for performance evolution and assessing scalability to high-volume production.

The supply chain will be based on technology platforms of Leti, imec and STMicroelectronics, supported by a unified design environment.

The multiple benefits of PLAT4M for the European photonic industry will include:

  • Preparing the supply chain for silicon photonics technology, from chip-level technology to packaged circuits
  • Making integration technologies accessible to a broad circle of users in a fabless model
  • Contributing to the development of a design environment that facilitates photonics/electronics convergence
  • Moving the emphasis from the component to the architecture, and thus concentrate efforts on new products or new functionalities rather than the technology level
  • Aggregating competencies in photonics/electronics design and fabrication, and
  • Retaining the key added value in components in Europe through optoelectronic integration, with little added value in offshore assembly

PLAT4M Consortium Members

The consortium consists of renowned technology providers, research institutes, end users and SMEs with excellent track records in advanced photonics technologies. At the design and process level, CEA and imec have been the most prominent European players in silicon photonics for a decade. Together with University of Paris-Sud, III-V Lab and TNO, they have demonstrated numerous scientific and technological breakthroughs.

For building a complete design flow, Mentor Graphics, PhoeniX BV and Si2 are world leaders in EDA tools and will work together to develop a common reference platform.

STMicroelectronics (France and Italy) brings its vast experience in microelectronics, and it has been engaged for the past year in the development of silicon photonics at the industrial level. Tyndall-UCC and Aifotec are renowned experts in the field of optoelectronic packaging and will work together on the implementation of packaging technologies developed within PLAT4M in a manufacturing environment.

End-users like Polytec, Thales Research & Technology and NXP will drive the demonstrators development and assess the use of silicon photonics in their applications fields.

About CEA-Leti

Leti is an institute of CEA, a French research-and-technology organization with activities in energy, IT, healthcare, defence and security. Leti is focused on creating value and innovation through technology transfer to its industrial partners. It specializes in nanotechnologies and their applications, from wireless devices and systems, to biology, healthcare and photonics. NEMS and MEMS are at the core of its activities. An anchor of the MINATEC campus, CEA-Leti operates 8,000-m² of state-of-the-art clean room space on 200mm and 300mm wafer platforms. It employs 1,700 scientists and engineers including 240 Ph.D. students and 200 assignees from partner companies. CEA-Leti owns more than 1,880 patent families. In 2011, CEA-Leti entered the capital of III-V lab. The public-private partnership between Alcatel-Lucent Bell Labs, Thales and CEA-Leti is combining III-V and silicon semiconductor technologies, opening up new research perspectives and dynamics.
For more information, visit www.leti.fr.

More Stories By Business Wire

Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...