Welcome!

Mobile IoT Authors: Scott Allen, Philippe Abdoulaye, Pat Romanski, Dana Gardner, Liz McMillan

News Feed Item

LBS Platforms and Technologies - 4th Edition

NEW YORK, Nov. 29, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

 

LBS Platforms and Technologies – 4th Edition

http://www.reportlinker.com/p0209446/LBS-Platforms-and-Technologies-–-4th-Edition.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=IT_Services

 

Executive summary

 

Location platforms comprise software and hardware extensions to network infrastructure components that together can calculate the position of a handset. Mobile location platforms enable three categories of location-based services (LBS): public safety services, national security and law enforcement applications, as well as commercial LBS. Nearly 70 percent of all emergency calls are today placed from mobile phones and it can often be difficult for the caller to convey their location accurately to first responders. Location platforms can reduce the time to find the location of the caller. They also enable more efficient handling of simultaneous calls from people reporting the same incident to distinguish single accidents from multiple events. Another use case is public warning systems that can locate and send messages to all mobile users within a geo-fenced area. Government agencies can also use location platforms and data mining systems for critical infrastructure protection and locationenhanced lawful intercept.

 

Location technologies can be divided into handset-based technologies (such as GPS) with intelligence mainly in the handset, network-based technologies (for instance Cell-ID, RF Pattern Matching and U-TDOA) with intelligence mainly in the network, as well as hybrid technologies (for instance A-GPS) with intelligence in both the handset and the network. Several new hybrid location technologies are in development, aiming to improve the performance of global navigation satellite systems (GNSS) in difficult environments. If not enough satellites are visible, it is for instance possible to fuse GNSS measurements with other network signals and data from inertial sensors to calculate the position. In pure indoor environments where GNSS is unavailable, the most common location technologies rely on Wi-Fi location using RF Pattern Matching or multilateration, augmented with data from sensors in the handset such as accelerometer, gyroscope, compass and barometer. The Federal Communications Commission's (FCC) E911 mandates for location of mobile emergency calls released in 1996 was a major driver behind the development of location platforms for the North American market. In Europe, as well as in other developed countries such as Japan and South Korea, early deployments of location platforms focused on supporting commercial services due to the lack of a clear mandate for emergency services. In the first deployment phase, lasting from 2000 to 2003, operators invested in platforms and ready-made services.

 

Overall, the results did not live up to the expectations in terms of uptake or usage and many operators therefore lost interest in LBS as a mass-market proposition. A majority of commercial LBS now use location data obtained directly from GPS receivers and Wi-Fi chipsets in the handset, or various third party location databases, rather than directly from operators using network-based location. Mobile operators are however showing increasing interest in using mass location data for advertising and marketing, as well as new services like analytics. Moreover, governments and telecom regulators worldwide are now introducing emergency call and lawful intercept mandates that require at least basic location platforms. Although the regulators have typically not yet imposed any specific location accuracy requirements as part of the mandates, more stringent location accuracy may well be demanded in the future as technologies mature and costs decrease. A diverse set of players are now developing indoor location platforms to support use-cases ranging from emergency call location to navigation, shopping, analytics and marketing. The established location platform vendors and connectivity chipset vendors are extending their offerings to enable indoor location. In addition, a growing number of technology specialists and start-up companies are also introducing software or infrastructure solutions that enable handset vendors, app developers and enterprises to add indoor location capabilities to smartphones that are already on the market.

 

Berg Insight estimates that one third of all mobile network operators worldwide have deployed at least some type of basic location platform. Additional deployments and updates of existing platforms can be expected in most markets in the coming years, primarily driven by government mandates, but also by new mass location applications such as advertising and analytics. Berg Insight forecasts that total global annual revenues for GMLC/MPC, SMLC/PDE, SUPL A-GNSS and probe-based location systems will grow from € 180 million in 2011 to € 330 million in 2017. These revenues comprise integration fees and licenses for new platform deployments, as well as capacity and technology upgrades, maintenance and associated services.

 

 

Table of Contents

 

Executive summary.1

1 Introduction to location platforms3

1.1 Location platforms and location-based services.3

1.1.1 Overview of mobile location platforms4

1.1.2 A brief history of location platforms and services .4

1.2 Mobile communication services6

1.2.1 Mobile voice and data subscribers .7

1.2.2 Mobile voice and SMS service revenues 8

1.2.3 Mobile data and application revenues 8

1.2.4 Location apps and service revenues 9

1.3 Mobile location platforms and technologies .10

1.3.1 Mobile location platforms10

1.3.2 Mobile location technologies 11

1.3.3 Location middleware.13

1.4 The mobile LBS value chain14

1.4.1 Location technology developers and platform vendors .14

1.4.2 Connectivity chipset vendors 15

1.4.3 LBS middleware vendors 16

1.4.4 Indoor location solution providers 16

1.4.5 Mobile network operators .17

1.4.6 Location aggregators and database providers.17

1.4.7 Smartphone platform and handset vendors .18

1.4.8 Mobile application developers and service providers 18

1.5 Telecoms regulations drive location platform deployments .19

1.5.1 European emergency call and privacy regulations 19

1.5.2 LBS regulatory environment in the US21

1.5.3 Emergency call regulations in Australia23

1.5.4 Emergency call regulations in Canada .23

1.5.5 The Indian Department of Telecommunications location mandate24

1.5.6 Emergency call regulations in Japan24

2 Technology overview.25

2.1 Mobile network location platforms 26

2.1.1 Location architecture for GSM/UMTS networks26

2.1.2 Location architecture for LTE networks 27

2.1.3 Location architecture and technologies in 3GPP2 networks28

2.1.4 Control Plane and User Plane location platforms .29

2.1.5 OMA SUPL 1.0 30

2.1.6 OMA SUPL 2.0 and SUPL 2.1 .30

2.1.7 OMA SUPL 3.0 32

2.1.8 Handset client and probe-based location platforms.33

2.1.9 Location in converged IP networks.34

2.2 Network-based positioning technologies35

2.2.1 Cell-ID35

2.2.2 Enhanced Cell-ID and RF Pattern Matching methods37

2.2.3 E-OTD and OTDOA.37

2.2.4 Uplink Time Difference of Arrival (U-TDOA) 38

2.2.5 Bluetooth and Wi-Fi positioning40

2.3 GNSS and hybrid location technologies .41

2.3.1 GNSS: GPS, GLONASS, Galileo and Compass .41

2.3.2 Assisted GPS and A-GNSS.44

2.3.3 Hybrid, mixed mode and indoor location technologies46

2.4 Comparison of location technologies47

2.4.1 Network-based location technologies.48

2.4.2 Handset-based and hybrid location technologies49

2.4.3 Location technologies in development .50

3 Location technology market trends.51

3.1 Multiple parallel efforts drive location technology development.51

3.1.1 Emergency call location and public safety .51

3.1.2 Location-enhanced lawful intercept and national security52

3.1.3 Consumer and enterprise LBS and apps53

3.1.4 Commercial indoor location services55

3.1.5 Mobile marketing and advertising.56

3.1.6 Fraud management and secure authentication56

3.2 Smartphone ecosystems.57

3.2.1 Smartphone platform market shares 59

3.2.2 Smartphone platforms transform into new vertical silos.60

3.2.3 Towards a complete LBS stack 60

4 Commercial deployments61

4.1 Platform deployments in Europe.62

4.1.1 3 Group .65

4.1.2 Deutsche Telekom Group .65

4.1.3 KPN Group 66

4.1.4 Orange Group .66

4.1.5 SFR67

4.1.6 Telecom Italia Mobile 68

4.1.7 Telefónica Group.68

4.1.8 Telenor Group .69

4.1.9 TeliaSonera Group 70

4.1.10 Vodafone Group71

4.2 Platform deployments in the Americas72

4.2.1 AT&T Mobility 74

4.2.2 Bell Mobility .74

4.2.3 Rogers Wireless 75

4.2.4 Sprint Nextel 75

4.2.5 TELUS .75

4.2.6 Verizon Wireless76

4.2.7 Wind Mobile.76

4.3 Platform deployments in Asia-Pacific 76

4.3.1 BSNL .78

4.3.2 China Mobile .78

4.3.3 NTT DoCoMo 78

4.3.4 Telstra79

4.3.5 Telkomsel 79

4.4 Platform deployments in ROW80

5 Market forecasts and trends 81

5.1 LBS market trends .81

5.1.1 Emergency call mandates remain the key driver for platform deployments 82

5.1.2 Location-enabled lawful intercept .82

5.1.3 Location-based services revenue forecast .83

5.2 Handset market trends 84

5.2.1 GNSS attach rates driven by higher smartphone sales85

5.2.2 GNSS-enabled handset shipment forecasts by segment.86

5.3 Location platform deployments.87

5.3.1 Vendor market shares .87

5.3.2 GMLC/MPC and SMLC/PDE platform deployment forecasts.88

5.3.3 SUPL A-GPS server deployment forecast.90

5.3.4 Location middleware deployment forecast.92

6 Location platform and technology vendor profiles93

6.1 Location platform and infrastructure vendors .93

6.1.1 Alcatel-Lucent95

6.1.2 CommScope .96

6.1.3 Creativity Software.97

6.1.4 Ericsson.98

6.1.5 GBSD Technologies99

6.1.6 Intersec100

6.1.7 Mobile Arts 101

6.1.8 Nokia Siemens Networks 103

6.1.9 Oksijen.103

6.1.10 Persistent Systems104

6.1.11 Polaris Wireless .105

6.1.12 Redknee 106

6.1.13 Septier .106

6.1.14 TeleCommunication Systems .107

6.1.15 TruePosition 109

6.2 Location middleware vendors .111

6.2.1 Aepona 111

6.2.2 CellVision.112

6.2.3 Genasys 113

6.2.4 Mobilaris 114

6.2.5 Reach-U.115

6.2.6 Telenity 116

6.3 GNSS chipset and assistance server vendors 118

6.3.1 Broadcom120

6.3.2 CSR .121

6.3.3 Qualcomm.122

6.3.4 Rx Networks 123

6.4 Client-based location platforms, aggregators and databases125

6.4.1 Apigee .125

6.4.2 Combain Mobile 126

6.4.3 Geoloqi127

6.4.4 Locaid127

6.4.5 Location Labs128

6.4.6 Navizon130

6.4.7 Skyhook Wireless131

6.5 Indoor location technology developers.132

6.5.1 Boeing .132

6.5.2 ByteLight .134

6.5.3 Cisco Systems.134

6.5.4 GloPos.135

6.5.5 IndoorAtlas 136

6.5.6 Insiteo 137

6.5.7 Nearbuy Systems138

6.5.8 NextNav.138

6.5.9 Nokia .139

6.5.10 Point Inside140

6.5.11 Pole Star 140

6.5.12 Qubulus.141

6.5.13 SenionLab .141

6.5.14 Walkbase.142

6.5.15 Wifarer .143

6.5.16 WiFiSLAM 144

Glossary 145

 

List of Figures

 

Figure 1.1: Wireless cellular subscribers by standard (World Q2-2012)6

Figure 1.2: Mobile subscriptions by region (World Q2-2012) 7

Figure 1.3: Wireless service revenues (World 2011) 9

Figure 1.4: Mobile location system overview10

Figure 1.5: Overview of the LBS value chain 15

Figure 2.1: Location architecture overview.27

Figure 2.2: Location Information Server in converged IP networks .34

Figure 2.3: Cellular frequency reuse pattern 35

Figure 2.4: Cell-ID location methods 36

Figure 2.5: U-TDOA location.39

Figure 2.6: Assisted GPS technologies 45

Figure 2.7: Performance and limiting factors for network-based location technologies47

Figure 2.8: Performance and limiting factors for hybrid location technologies49

Figure 3.1: Smartphone adoption by region (World 2010–2012).57

Figure 3.2: Smartphone shipments by vendor and OS (World H1-2012) 58

Figure 4.1: Location infrastructure and technology vendor customer references .61

Figure 4.2: Location infrastructure deployments in Europe .62

Figure 4.3: Location infrastructure deployments in the Americas72

Figure 4.4: Location infrastructure deployments in Asia-Pacific 77

Figure 4.5: Location infrastructure deployments in ROW.80

Figure 5.1: Emergency and commercial LBS revenue forecast (World 2011–2017) .83

Figure 5.2: Handset shipment forecast by segment (World 2010–2016).84

Figure 5.3: GNSS-enabled handset shipment forecast by segment (World 2010–2016) 86

Figure 5.4: Location infrastructure vendor market shares (World 2012)87

Figure 5.5: Location platform revenues (World 2011–2017) 88

Figure 6.1: Location infrastructure and technology vendors93

Figure 6.2: Location infrastructure and technology product offerings by vendor94

Figure 6.3: Major location middleware vendors .111

Figure 6.4: Examples of GNSS chipset and assistance server developers .118

Figure 6.5: Location aggregators and client-based location platform developers.125

Figure 6.6: Overview of indoor location technologies by vendor.133

 

 

 

To order this report:

IT_Services Industry: LBS Platforms and Technologies – 4th Edition

 

Nicolas Bombourg
Reportlinker
Email: [email protected]
US: (805)652-2626
Intl: +1 805-652-2626

 

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
The IoT is changing the way enterprises conduct business. In his session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, discussed how businesses can gain an edge over competitors by empowering consumers to take control through IoT. He cited examples such as a Washington, D.C.-based sports club that leveraged IoT and the cloud to develop a comprehensive booking system. He also highlighted how IoT can revitalize and restore outdated business models, making them profitable ...
IoT offers a value of almost $4 trillion to the manufacturing industry through platforms that can improve margins, optimize operations & drive high performance work teams. By using IoT technologies as a foundation, manufacturing customers are integrating worker safety with manufacturing systems, driving deep collaboration and utilizing analytics to exponentially increased per-unit margins. However, as Benoit Lheureux, the VP for Research at Gartner points out, “IoT project implementers often ...
When people aren’t talking about VMs and containers, they’re talking about serverless architecture. Serverless is about no maintenance. It means you are not worried about low-level infrastructural and operational details. An event-driven serverless platform is a great use case for IoT. In his session at @ThingsExpo, Animesh Singh, an STSM and Lead for IBM Cloud Platform and Infrastructure, will detail how to build a distributed serverless, polyglot, microservices framework using open source tec...
The idea of comparing data in motion (at the sensor level) to data at rest (in a Big Data server warehouse) with predictive analytics in the cloud is very appealing to the industrial IoT sector. The problem Big Data vendors have, however, is access to that data in motion at the sensor location. In his session at @ThingsExpo, Scott Allen, CMO of FreeWave, discussed how as IoT is increasingly adopted by industrial markets, there is going to be an increased demand for sensor data from the outermos...
CenturyLink has announced that application server solutions from GENBAND are now available as part of CenturyLink’s Networx contracts. The General Services Administration (GSA)’s Networx program includes the largest telecommunications contract vehicles ever awarded by the federal government. CenturyLink recently secured an extension through spring 2020 of its offerings available to federal government agencies via GSA’s Networx Universal and Enterprise contracts. GENBAND’s EXPERiUS™ Application...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, wh...
"delaPlex is a software development company. We do team-based outsourcing development," explained Mark Rivers, COO and Co-founder of delaPlex Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
"We work in the area of Big Data analytics and Big Data analytics is a very crowded space - you have Hadoop, ETL, warehousing, visualization and there's a lot of effort trying to get these tools to talk to each other," explained Mukund Deshpande, head of the Analytics practice at Accelerite, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Cloud Expo, Inc. has announced today that Andi Mann returns to 'DevOps at Cloud Expo 2016' as Conference Chair The @DevOpsSummit at Cloud Expo will take place on November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. "DevOps is set to be one of the most profound disruptions to hit IT in decades," said Andi Mann. "It is a natural extension of cloud computing, and I have seen both firsthand and in independent research the fantastic results DevOps delivers. So I am excited t...
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to imp...
The cloud promises new levels of agility and cost-savings for Big Data, data warehousing and analytics. But it’s challenging to understand all the options – from IaaS and PaaS to newer services like HaaS (Hadoop as a Service) and BDaaS (Big Data as a Service). In her session at @BigDataExpo at @ThingsExpo, Hannah Smalltree, a director at Cazena, provided an educational overview of emerging “as-a-service” options for Big Data in the cloud. This is critical background for IT and data profession...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
Connected devices and the industrial internet are growing exponentially every year with Cisco expecting 50 billion devices to be in operation by 2020. In this period of growth, location-based insights are becoming invaluable to many businesses as they adopt new connected technologies. Knowing when and where these devices connect from is critical for a number of scenarios in supply chain management, disaster management, emergency response, M2M, location marketing and more. In his session at @Th...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life sett...
IoT is rapidly changing the way enterprises are using data to improve business decision-making. In order to derive business value, organizations must unlock insights from the data gathered and then act on these. In their session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, and Peter Shashkin, Head of Development Department at EastBanc Technologies, discussed how one organization leveraged IoT, cloud technology and data analysis to improve customer experiences and effi...
Basho Technologies has announced the latest release of Basho Riak TS, version 1.3. Riak TS is an enterprise-grade NoSQL database optimized for Internet of Things (IoT). The open source version enables developers to download the software for free and use it in production as well as make contributions to the code and develop applications around Riak TS. Enhancements to Riak TS make it quick, easy and cost-effective to spin up an instance to test new ideas and build IoT applications. In addition to...
The cloud market growth today is largely in public clouds. While there is a lot of spend in IT departments in virtualization, these aren’t yet translating into a true “cloud” experience within the enterprise. What is stopping the growth of the “private cloud” market? In his general session at 18th Cloud Expo, Nara Rajagopalan, CEO of Accelerite, explored the challenges in deploying, managing, and getting adoption for a private cloud within an enterprise. What are the key differences between wh...
Presidio has received the 2015 EMC Partner Services Quality Award from EMC Corporation for achieving outstanding service excellence and customer satisfaction as measured by the EMC Partner Services Quality (PSQ) program. Presidio was also honored as the 2015 EMC Americas Marketing Excellence Partner of the Year and 2015 Mid-Market East Partner of the Year. The EMC PSQ program is a project-specific survey program designed for partners with Service Partner designations to solicit customer feedbac...
There are several IoTs: the Industrial Internet, Consumer Wearables, Wearables and Healthcare, Supply Chains, and the movement toward Smart Grids, Cities, Regions, and Nations. There are competing communications standards every step of the way, a bewildering array of sensors and devices, and an entire world of competing data analytics platforms. To some this appears to be chaos. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, Bradley Holt, Developer Advocate a...
SYS-CON Events has announced today that Roger Strukhoff has been named conference chair of Cloud Expo and @ThingsExpo 2016 Silicon Valley. The 19th Cloud Expo and 6th @ThingsExpo will take place on November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. "The Internet of Things brings trillions of dollars of opportunity to developers and enterprise IT, no matter how you measure it," stated Roger Strukhoff. "More importantly, it leverages the power of devices and the Interne...