Click here to close now.

Welcome!

Wireless Authors: Dana Gardner, Liz McMillan, Carmen Gonzalez, Elizabeth White, Peter Silva

News Feed Item

LBS Platforms and Technologies - 4th Edition

NEW YORK, Nov. 29, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

 

LBS Platforms and Technologies – 4th Edition

http://www.reportlinker.com/p0209446/LBS-Platforms-and-Technologies-–-4th-Edition.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=IT_Services

 

Executive summary

 

Location platforms comprise software and hardware extensions to network infrastructure components that together can calculate the position of a handset. Mobile location platforms enable three categories of location-based services (LBS): public safety services, national security and law enforcement applications, as well as commercial LBS. Nearly 70 percent of all emergency calls are today placed from mobile phones and it can often be difficult for the caller to convey their location accurately to first responders. Location platforms can reduce the time to find the location of the caller. They also enable more efficient handling of simultaneous calls from people reporting the same incident to distinguish single accidents from multiple events. Another use case is public warning systems that can locate and send messages to all mobile users within a geo-fenced area. Government agencies can also use location platforms and data mining systems for critical infrastructure protection and locationenhanced lawful intercept.

 

Location technologies can be divided into handset-based technologies (such as GPS) with intelligence mainly in the handset, network-based technologies (for instance Cell-ID, RF Pattern Matching and U-TDOA) with intelligence mainly in the network, as well as hybrid technologies (for instance A-GPS) with intelligence in both the handset and the network. Several new hybrid location technologies are in development, aiming to improve the performance of global navigation satellite systems (GNSS) in difficult environments. If not enough satellites are visible, it is for instance possible to fuse GNSS measurements with other network signals and data from inertial sensors to calculate the position. In pure indoor environments where GNSS is unavailable, the most common location technologies rely on Wi-Fi location using RF Pattern Matching or multilateration, augmented with data from sensors in the handset such as accelerometer, gyroscope, compass and barometer. The Federal Communications Commission's (FCC) E911 mandates for location of mobile emergency calls released in 1996 was a major driver behind the development of location platforms for the North American market. In Europe, as well as in other developed countries such as Japan and South Korea, early deployments of location platforms focused on supporting commercial services due to the lack of a clear mandate for emergency services. In the first deployment phase, lasting from 2000 to 2003, operators invested in platforms and ready-made services.

 

Overall, the results did not live up to the expectations in terms of uptake or usage and many operators therefore lost interest in LBS as a mass-market proposition. A majority of commercial LBS now use location data obtained directly from GPS receivers and Wi-Fi chipsets in the handset, or various third party location databases, rather than directly from operators using network-based location. Mobile operators are however showing increasing interest in using mass location data for advertising and marketing, as well as new services like analytics. Moreover, governments and telecom regulators worldwide are now introducing emergency call and lawful intercept mandates that require at least basic location platforms. Although the regulators have typically not yet imposed any specific location accuracy requirements as part of the mandates, more stringent location accuracy may well be demanded in the future as technologies mature and costs decrease. A diverse set of players are now developing indoor location platforms to support use-cases ranging from emergency call location to navigation, shopping, analytics and marketing. The established location platform vendors and connectivity chipset vendors are extending their offerings to enable indoor location. In addition, a growing number of technology specialists and start-up companies are also introducing software or infrastructure solutions that enable handset vendors, app developers and enterprises to add indoor location capabilities to smartphones that are already on the market.

 

Berg Insight estimates that one third of all mobile network operators worldwide have deployed at least some type of basic location platform. Additional deployments and updates of existing platforms can be expected in most markets in the coming years, primarily driven by government mandates, but also by new mass location applications such as advertising and analytics. Berg Insight forecasts that total global annual revenues for GMLC/MPC, SMLC/PDE, SUPL A-GNSS and probe-based location systems will grow from € 180 million in 2011 to € 330 million in 2017. These revenues comprise integration fees and licenses for new platform deployments, as well as capacity and technology upgrades, maintenance and associated services.

 

 

Table of Contents

 

Executive summary.1

1 Introduction to location platforms3

1.1 Location platforms and location-based services.3

1.1.1 Overview of mobile location platforms4

1.1.2 A brief history of location platforms and services .4

1.2 Mobile communication services6

1.2.1 Mobile voice and data subscribers .7

1.2.2 Mobile voice and SMS service revenues 8

1.2.3 Mobile data and application revenues 8

1.2.4 Location apps and service revenues 9

1.3 Mobile location platforms and technologies .10

1.3.1 Mobile location platforms10

1.3.2 Mobile location technologies 11

1.3.3 Location middleware.13

1.4 The mobile LBS value chain14

1.4.1 Location technology developers and platform vendors .14

1.4.2 Connectivity chipset vendors 15

1.4.3 LBS middleware vendors 16

1.4.4 Indoor location solution providers 16

1.4.5 Mobile network operators .17

1.4.6 Location aggregators and database providers.17

1.4.7 Smartphone platform and handset vendors .18

1.4.8 Mobile application developers and service providers 18

1.5 Telecoms regulations drive location platform deployments .19

1.5.1 European emergency call and privacy regulations 19

1.5.2 LBS regulatory environment in the US21

1.5.3 Emergency call regulations in Australia23

1.5.4 Emergency call regulations in Canada .23

1.5.5 The Indian Department of Telecommunications location mandate24

1.5.6 Emergency call regulations in Japan24

2 Technology overview.25

2.1 Mobile network location platforms 26

2.1.1 Location architecture for GSM/UMTS networks26

2.1.2 Location architecture for LTE networks 27

2.1.3 Location architecture and technologies in 3GPP2 networks28

2.1.4 Control Plane and User Plane location platforms .29

2.1.5 OMA SUPL 1.0 30

2.1.6 OMA SUPL 2.0 and SUPL 2.1 .30

2.1.7 OMA SUPL 3.0 32

2.1.8 Handset client and probe-based location platforms.33

2.1.9 Location in converged IP networks.34

2.2 Network-based positioning technologies35

2.2.1 Cell-ID35

2.2.2 Enhanced Cell-ID and RF Pattern Matching methods37

2.2.3 E-OTD and OTDOA.37

2.2.4 Uplink Time Difference of Arrival (U-TDOA) 38

2.2.5 Bluetooth and Wi-Fi positioning40

2.3 GNSS and hybrid location technologies .41

2.3.1 GNSS: GPS, GLONASS, Galileo and Compass .41

2.3.2 Assisted GPS and A-GNSS.44

2.3.3 Hybrid, mixed mode and indoor location technologies46

2.4 Comparison of location technologies47

2.4.1 Network-based location technologies.48

2.4.2 Handset-based and hybrid location technologies49

2.4.3 Location technologies in development .50

3 Location technology market trends.51

3.1 Multiple parallel efforts drive location technology development.51

3.1.1 Emergency call location and public safety .51

3.1.2 Location-enhanced lawful intercept and national security52

3.1.3 Consumer and enterprise LBS and apps53

3.1.4 Commercial indoor location services55

3.1.5 Mobile marketing and advertising.56

3.1.6 Fraud management and secure authentication56

3.2 Smartphone ecosystems.57

3.2.1 Smartphone platform market shares 59

3.2.2 Smartphone platforms transform into new vertical silos.60

3.2.3 Towards a complete LBS stack 60

4 Commercial deployments61

4.1 Platform deployments in Europe.62

4.1.1 3 Group .65

4.1.2 Deutsche Telekom Group .65

4.1.3 KPN Group 66

4.1.4 Orange Group .66

4.1.5 SFR67

4.1.6 Telecom Italia Mobile 68

4.1.7 Telefónica Group.68

4.1.8 Telenor Group .69

4.1.9 TeliaSonera Group 70

4.1.10 Vodafone Group71

4.2 Platform deployments in the Americas72

4.2.1 AT&T Mobility 74

4.2.2 Bell Mobility .74

4.2.3 Rogers Wireless 75

4.2.4 Sprint Nextel 75

4.2.5 TELUS .75

4.2.6 Verizon Wireless76

4.2.7 Wind Mobile.76

4.3 Platform deployments in Asia-Pacific 76

4.3.1 BSNL .78

4.3.2 China Mobile .78

4.3.3 NTT DoCoMo 78

4.3.4 Telstra79

4.3.5 Telkomsel 79

4.4 Platform deployments in ROW80

5 Market forecasts and trends 81

5.1 LBS market trends .81

5.1.1 Emergency call mandates remain the key driver for platform deployments 82

5.1.2 Location-enabled lawful intercept .82

5.1.3 Location-based services revenue forecast .83

5.2 Handset market trends 84

5.2.1 GNSS attach rates driven by higher smartphone sales85

5.2.2 GNSS-enabled handset shipment forecasts by segment.86

5.3 Location platform deployments.87

5.3.1 Vendor market shares .87

5.3.2 GMLC/MPC and SMLC/PDE platform deployment forecasts.88

5.3.3 SUPL A-GPS server deployment forecast.90

5.3.4 Location middleware deployment forecast.92

6 Location platform and technology vendor profiles93

6.1 Location platform and infrastructure vendors .93

6.1.1 Alcatel-Lucent95

6.1.2 CommScope .96

6.1.3 Creativity Software.97

6.1.4 Ericsson.98

6.1.5 GBSD Technologies99

6.1.6 Intersec100

6.1.7 Mobile Arts 101

6.1.8 Nokia Siemens Networks 103

6.1.9 Oksijen.103

6.1.10 Persistent Systems104

6.1.11 Polaris Wireless .105

6.1.12 Redknee 106

6.1.13 Septier .106

6.1.14 TeleCommunication Systems .107

6.1.15 TruePosition 109

6.2 Location middleware vendors .111

6.2.1 Aepona 111

6.2.2 CellVision.112

6.2.3 Genasys 113

6.2.4 Mobilaris 114

6.2.5 Reach-U.115

6.2.6 Telenity 116

6.3 GNSS chipset and assistance server vendors 118

6.3.1 Broadcom120

6.3.2 CSR .121

6.3.3 Qualcomm.122

6.3.4 Rx Networks 123

6.4 Client-based location platforms, aggregators and databases125

6.4.1 Apigee .125

6.4.2 Combain Mobile 126

6.4.3 Geoloqi127

6.4.4 Locaid127

6.4.5 Location Labs128

6.4.6 Navizon130

6.4.7 Skyhook Wireless131

6.5 Indoor location technology developers.132

6.5.1 Boeing .132

6.5.2 ByteLight .134

6.5.3 Cisco Systems.134

6.5.4 GloPos.135

6.5.5 IndoorAtlas 136

6.5.6 Insiteo 137

6.5.7 Nearbuy Systems138

6.5.8 NextNav.138

6.5.9 Nokia .139

6.5.10 Point Inside140

6.5.11 Pole Star 140

6.5.12 Qubulus.141

6.5.13 SenionLab .141

6.5.14 Walkbase.142

6.5.15 Wifarer .143

6.5.16 WiFiSLAM 144

Glossary 145

 

List of Figures

 

Figure 1.1: Wireless cellular subscribers by standard (World Q2-2012)6

Figure 1.2: Mobile subscriptions by region (World Q2-2012) 7

Figure 1.3: Wireless service revenues (World 2011) 9

Figure 1.4: Mobile location system overview10

Figure 1.5: Overview of the LBS value chain 15

Figure 2.1: Location architecture overview.27

Figure 2.2: Location Information Server in converged IP networks .34

Figure 2.3: Cellular frequency reuse pattern 35

Figure 2.4: Cell-ID location methods 36

Figure 2.5: U-TDOA location.39

Figure 2.6: Assisted GPS technologies 45

Figure 2.7: Performance and limiting factors for network-based location technologies47

Figure 2.8: Performance and limiting factors for hybrid location technologies49

Figure 3.1: Smartphone adoption by region (World 2010–2012).57

Figure 3.2: Smartphone shipments by vendor and OS (World H1-2012) 58

Figure 4.1: Location infrastructure and technology vendor customer references .61

Figure 4.2: Location infrastructure deployments in Europe .62

Figure 4.3: Location infrastructure deployments in the Americas72

Figure 4.4: Location infrastructure deployments in Asia-Pacific 77

Figure 4.5: Location infrastructure deployments in ROW.80

Figure 5.1: Emergency and commercial LBS revenue forecast (World 2011–2017) .83

Figure 5.2: Handset shipment forecast by segment (World 2010–2016).84

Figure 5.3: GNSS-enabled handset shipment forecast by segment (World 2010–2016) 86

Figure 5.4: Location infrastructure vendor market shares (World 2012)87

Figure 5.5: Location platform revenues (World 2011–2017) 88

Figure 6.1: Location infrastructure and technology vendors93

Figure 6.2: Location infrastructure and technology product offerings by vendor94

Figure 6.3: Major location middleware vendors .111

Figure 6.4: Examples of GNSS chipset and assistance server developers .118

Figure 6.5: Location aggregators and client-based location platform developers.125

Figure 6.6: Overview of indoor location technologies by vendor.133

 

 

 

To order this report:

IT_Services Industry: LBS Platforms and Technologies – 4th Edition

 

Nicolas Bombourg
Reportlinker
Email: [email protected]
US: (805)652-2626
Intl: +1 805-652-2626

 

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch of Docker's initial release in March of 2013, interest was revved up several notches. Then late last...
SYS-CON Events announced today that Vitria Technology, Inc. will exhibit at SYS-CON’s @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Vitria will showcase the company’s new IoT Analytics Platform through live demonstrations at booth #330. Vitria’s IoT Analytics Platform, fully integrated and powered by an operational intelligence engine, enables customers to rapidly build and operationalize advanced analytics to deliver timely business outcomes for use cases across the industrial, enterprise, and consumer segments.
HP and Aruba Networks on Monday announced a definitive agreement for HP to acquire Aruba, a provider of next-generation network access solutions for the mobile enterprise, for $24.67 per share in cash. The equity value of the transaction is approximately $3.0 billion, and net of cash and debt approximately $2.7 billion. Both companies' boards of directors have approved the deal. "Enterprises are facing a mobile-first world and are looking for solutions that help them transition legacy investments to the new style of IT," said Meg Whitman, Chairman, President and Chief Executive Officer of HP...
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
SYS-CON Events announced today that Open Data Centers (ODC), a carrier-neutral colocation provider, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place June 9-11, 2015, at the Javits Center in New York City, NY. Open Data Centers is a carrier-neutral data center operator in New Jersey and New York City offering alternative connectivity options for carriers, service providers and enterprise customers.
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
PubNub on Monday has announced that it is partnering with IBM to bring its sophisticated real-time data streaming and messaging capabilities to Bluemix, IBM’s cloud development platform. “Today’s app and connected devices require an always-on connection, but building a secure, scalable solution from the ground up is time consuming, resource intensive, and error-prone,” said Todd Greene, CEO of PubNub. “PubNub enables web, mobile and IoT developers building apps on IBM Bluemix to quickly add scalable realtime functionality with minimal effort and cost.”
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
With several hundred implementations of IoT-enabled solutions in the past 12 months alone, this session will focus on experience over the art of the possible. Many can only imagine the most advanced telematics platform ever deployed, supporting millions of customers, producing tens of thousands events or GBs per trip, and hundreds of TBs per month. With the ability to support a billion sensor events per second, over 30PB of warm data for analytics, and hundreds of PBs for an data analytics archive, in his session at @ThingsExpo, Jim Kaskade, Vice President and General Manager, Big Data & Ana...
In the consumer IoT, everything is new, and the IT world of bits and bytes holds sway. But industrial and commercial realms encompass operational technology (OT) that has been around for 25 or 50 years. This grittier, pre-IP, more hands-on world has much to gain from Industrial IoT (IIoT) applications and principles. But adding sensors and wireless connectivity won’t work in environments that demand unwavering reliability and performance. In his session at @ThingsExpo, Ron Sege, CEO of Echelon, will discuss how as enterprise IT embraces other IoT-related technology trends, enterprises with i...
When it comes to the Internet of Things, hooking up will get you only so far. If you want customers to commit, you need to go beyond simply connecting products. You need to use the devices themselves to transform how you engage with every customer and how you manage the entire product lifecycle. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, will show how “product relationship management” can help you leverage your connected devices and the data they generate about customer usage and product performance to deliver extremely compelling and reliabl...
The Internet of Things (IoT) is causing data centers to become radically decentralized and atomized within a new paradigm known as “fog computing.” To support IoT applications, such as connected cars and smart grids, data centers' core functions will be decentralized out to the network's edges and endpoints (aka “fogs”). As this trend takes hold, Big Data analytics platforms will focus on high-volume log analysis (aka “logs”) and rely heavily on cognitive-computing algorithms (aka “cogs”) to make sense of it all.
One of the biggest impacts of the Internet of Things is and will continue to be on data; specifically data volume, management and usage. Companies are scrambling to adapt to this new and unpredictable data reality with legacy infrastructure that cannot handle the speed and volume of data. In his session at @ThingsExpo, Don DeLoach, CEO and president of Infobright, will discuss how companies need to rethink their data infrastructure to participate in the IoT, including: Data storage: Understanding the kinds of data: structured, unstructured, big/small? Analytics: What kinds and how responsiv...
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
Roberto Medrano, Executive Vice President at SOA Software, had reached 30,000 page views on his home page - http://RobertoMedrano.SYS-CON.com/ - on the SYS-CON family of online magazines, which includes Cloud Computing Journal, Internet of Things Journal, Big Data Journal, and SOA World Magazine. He is a recognized executive in the information technology fields of SOA, internet security, governance, and compliance. He has extensive experience with both start-ups and large companies, having been involved at the beginning of four IT industries: EDA, Open Systems, Computer Security and now SOA.
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
Operational Hadoop and the Lambda Architecture for Streaming Data Apache Hadoop is emerging as a distributed platform for handling large and fast incoming streams of data. Predictive maintenance, supply chain optimization, and Internet-of-Things analysis are examples where Hadoop provides the scalable storage, processing, and analytics platform to gain meaningful insights from granular data that is typically only valuable from a large-scale, aggregate view. One architecture useful for capturing and analyzing streaming data is the Lambda Architecture, representing a model of how to analyze rea...