Click here to close now.




















Welcome!

Mobile IoT Authors: Cloud Best Practices Network, Pat Romanski, Liz McMillan, Kevin Benedict, Elizabeth White

News Feed Item

Smart Metering in Europe - 9th Edition

NEW YORK, Nov. 8, 2012  /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Smart Metering in Europe – 9th Edition
http://www.reportlinker.com/p0574956/Smart-Metering-in-Europe-–-9th-Edition.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Electrical_Equipment

Executive summary

EU27+2 has 277 million metered electricity customers and the annual demand for electricity meters for new installations and replacements is in the range of 12–17 million units. Penetration for smart meters, providing more comprehensive functionality than basic meter data collections, was 18 percent at the end of 2011. By 2017, Berg Insight projects that the rate will increase to 56 percent, driven by large rollouts in Spain, France and the UK, in combination with nationwide rollouts in several smaller countries. The installed base of smart electricity meters is forecasted to grow at a compound annual growth rate of 20.5 percent between 2011 and 2017 to reach 154.7 million units at the end of the period. The high growth rate will be sustained until the end of the decade as nationwide rollouts are completed in France, the UK and several other countries. A decision by Germany to introduce smart metering would extend the strong momentum for smart meters in Europe into the 2020s. At the end of Q3-2012, eleven European countries had developed regulatory roadmaps for the full-scale introduction of smart meters. The latest new country to adopt this policy was Austria in April 2012. Sweden and Italy completed deployments at the end of 2009 and 2011, respectively and Finland will be ready by the end of 2013, followed by Estonia and Norway in 2017. France and Spain have set target dates in 2018, while Austria, Ireland, the Netherlands and the UK aim for nationwide rollouts to be completed during 2019/2020. Furthermore, the governments in Denmark and Malta have put their countries on track for full coverage of smart meters before the end of this decade by supporting rollouts by state-controlled electricity companies. Cyprus, Poland, Portugal and Romania are additional countries leaning towards regulation-driven smart meter rollouts. Germany currently prefers that rollouts should be industry-driven and considers only minor requirements for household customers with high electricity consumption. A cost benefit analysis of the business case for smart metering in Germany due in 2013 may however change this policy. Government attitudes towards smart metering in other European countries ranges from keen interest expressed through active support for large pilot projects to virtual indifference.

As a result of the massive replacements, smart meters will come to dominate the European electricity metering market, accounting for over 95 percent of the total volume. After reaching a low point of 2.6 million units in 2009, demand for smart meters recovered in 2011 as massive installations began in Spain. In 2014 the market is expected to reach an inflection point as mass rollouts begin in France, the UK, the Netherlands and several other countries. During the second half of the 2010s, Berg Insight expects that annual shipments of smart electricity meters will be in the range of 25–30 million units. The aggregate investment cost for the deployment of 110 million smart electricity meters in Europe between 2011 and 2017 is projected to around € 15.8 billion. Based on industry data the capital expenditure for a smart metering project in Western Europe can vary in the span of € 140–240 per metering point. In Central Eastern Europe the projected cost is around € 100–150 per metering point, due to lower labour costs. Next generation powerline communication (PLC) technologies are a key enabler for the new wave of smart meter rollouts in Europe. PLC is the dominant last-mile communication technology for smart meters on the European market with a market share of around 85 percent. The G3-PLC and PRIME initiatives, launched by ERDF and Iberdrola respectively in the late 2000s have now evolved into complete standards, supported by commercially available chipsets from leading semiconductor vendors. Both standards have been approved by the ITU and the industry associations created to promote them are now cooperating around the new more comprehensive G.hnem PLC standard. In addition, the IEEE has launched a widely supported PLC standards initiative. Berg Insight has the opinion that a certain degree of competition between PLC standards is a healthy driver for innovation that will do little harm by fragmenting the market. All standards largely use the same underlying technology, which enables semiconductor vendors to use the same core platforms to create many different types of PLC chipsets. Regional variations will always be inevitable due to the different characterstics of electricity networks around the world. When it comes to large-scale deployments, the balance between cost and desired performance will decide the choice between basic or more advanced PLC standards.

Table of Contents

Table of Contents. i
List of Figures
ix
Executive summary..1
1 Electricity, gas and district heating markets in Europe 3
1.1 Energy industry players3
1.2 Electricity market 5
1.3 Gas market ..13
1.4 District heating market16
2 Smart metering solutions....17
2.1 Introduction to smart grids ...17
2.2 Smart metering .20
2.2.1 Smart metering applications ....20
2.2.2 Smart metering infrastructure...24
2.2.3 Benefits of smart metering ..27
2.3 Project strategies ...29
2.3.1 System design and sourcing ...29
2.3.2 Rollout and integration ...30
2.3.3 Implementation and operation .31
2.3.4 Communicating with customers ...31
2.4 Regulatory issues ..32
2.4.1 Models for the introduction of smart meters 32
2.4.2 Standards and guidelines ...33
2.4.3 Individual rights issues...36
3 Networks and communication technologies ....37
3.1 Smart grid communication networks ..37
3.1.1 Smart grid network architecture....39
3.1.2 Communication technology options..41
3.2 PLC technology and vendors....42
3.2.1 International standards organisations44
3.2.2 G3-PLC..46
3.2.3 PRIME....48
3.2.4 Meters & More.50
3.2.5 LonWorks ...51
3.2.6 HomeGrid...52
3.2.7 HomePlug...52
3.2.8 Semiconductor companies .54
3.3 RF technology and vendors .60
3.3.1 International standards organisations61
3.3.2 Wi-SUN..61
3.3.3 ZigBee ...62
3.3.4 WAVE2M62
3.3.5 Z-Wave ..63
3.4 Cellular technology and vendors....63
3.4.1 2G networks ....63
3.4.2 3G and 4G networks .64
3.4.3 Cellular M2M module vendors .64
4 Smart metering industry players...67
4.1 Meter vendors...67
4.1.1 Landis+Gyr 68
4.1.2 Itron ..73
4.1.3 Elster.76
4.1.4 AEM..78
4.1.5 Aidon 79
4.1.6 Apator....79
4.1.7 Circutor..80
4.1.8 Diehl Metering .80
4.1.9 EMH Metering..81
4.1.10 Elgama Elektronika ...81
4.1.11 Energomera82
4.1.12 GE Energy ..82
4.1.13 Hager83
4.1.14 Iskraemeco.84
4.1.15 Janz ..84
4.1.16 Kamstrup ....85
4.1.17 Orbis.85
4.1.18 Osaki Electric ..86
4.1.19 RIZ ....87
4.1.20 Sagemcom.87
4.1.21 Secure Meters .88
4.1.22 Sensus...89
4.1.23 Sogecam ....89
4.1.24 ZIV ....90
4.2 Smart grid solution providers ....90
4.2.1 ABB...91
4.2.2 ADD Grup...91
4.2.3 Connode92
4.2.4 Corinex ..93
4.2.5 CURRENT...94
4.2.6 Dr Neuhaus 94
4.2.7 Echelon .95
4.2.8 Embriq...96
4.2.9 Metrima..96
4.2.10 NURI Telecom.97
4.2.11 Power Plus Communications ...97
4.2.12 POWRtec....98
4.2.13 Sentec ...98
4.2.14 Siemens.99
4.2.15 Silver Spring Networks.100
4.2.16 SmartReach...101
4.2.17 Trilliant .102
4.2.18 Xemex..103
4.2.19 ZPA Smart Energy...104
4.3 MDMS and middleware vendors ..104
4.3.1 Cuculus ....104
4.3.2 Ecologic Analytics ...105
4.3.3 eMeter..105
4.3.4 EnergyICT.106
4.3.5 Enoro...107
4.3.6 Görlitz ..107
4.3.7 Netinium ...108
4.3.8 Oracle ..108
4.3.9 Powel...109
4.3.10 SAP.110
4.4 System integrators and managed service providers..110
4.4.1 IT industry players ...111
4.4.2 Telecom industry players ..113
5 Market profiles ...117
5.1 Regional summary....117
5.1.1 EU smart metering policies ....117
5.1.2 National smart metering policies.119
5.1.3 Top smart metering projects in EU27+2 countries ..121
5.2 Austria...123
5.2.1 Electricity and gas distribution industry structure123
5.2.2 Metering regulatory environment 124
5.2.3 Smart metering market developments..125
5.3 Belgium.126
5.3.1 Electricity and gas distribution industry structure126
5.3.2 Metering regulatory environment and smart metering market developments .127
5.4 Bulgaria.128
5.4.1 Electricity and gas distribution industry structure128
5.4.2 Metering regulatory environment and smart metering market developments .129
5.5 Cyprus ..130
5.5.1 Electricity distribution industry structure....130
5.5.2 Metering regulatory environment and smart metering pilots...131
5.6 Czech Republic ...132
5.6.1 Electricity and gas distribution industry structure132
5.6.2 Metering regulatory environment and smart metering pilots...133
5.7 Denmark ....134
5.7.1 Electricity distribution industry structure....134
5.7.2 Metering regulatory environment 135
5.7.3 Smart metering market developments..136
5.8 Estonia..138
5.8.1 Electricity distribution industry structure....138
5.8.2 Metering regulatory environment and smart metering market developments .139
5.9 Finland ..140
5.9.1 Electricity distribution industry structure....140
5.9.2 Metering regulatory environment 143
5.9.3 Smart metering market developments..143
5.10 France...145
5.10.1 Electricity and gas distribution industry structure145
5.10.2 Metering regulatory environment and smart metering market developments .146
5.11 Germany....147
5.11.1 Electricity and gas distribution industry structure147
5.11.2 Metering regulatory environment 150
5.11.3 Smart meter market developments..152
5.12 Greece ..153
5.12.1 Electricity and gas distribution industry structure153
5.12.2 Metering regulatory environment and smart metering market developments .154
5.13 Hungary 154
5.13.1 Electricity and gas distribution industry structure155
5.13.2 Metering regulatory environment and smart metering market developments .156
5.14 Ireland...156
5.14.1 Electricity and gas distribution industry structure157
5.14.2 Nationwide program for deployment of smart meters ...157
5.15 Italy ..160
5.15.1 Electricity and gas distribution industry structure160
5.15.2 Metering regulatory environment 162
5.15.3 Smart metering market developments..163
5.16 Latvia164
5.16.1 Electricity and gas distribution industry structure164
5.16.2 Metering regulatory environment and smart metering market developments .165
5.17 Lithuania ....165
5.18 Luxembourg....166
5.19 Malta 167
5.19.1 Utility industry structure168
5.19.2 National smart grid project168
5.20 Netherlands ....169
5.20.1 Electricity and gas distribution industry structure169
5.20.2 Metering regulatory environment and smart meter market developments .171
5.21 Norway..173
5.21.1 Electricity distribution industry structure....173
5.21.2 Metering regulatory environment 174
5.21.3 Smart metering market developments and DSO rollout preparations ...176
5.22 Poland...178
5.22.1 Electricity and gas distribution industry structure178
5.22.2 Metering regulatory environment and smart metering projects ...179
5.23 Portugal 180
5.23.1 Electricity and gas distribution industry structure180
5.23.2 Metering regulatory environment and smart metering market developments .181
5.24 Romania182
5.24.1 Electricity and gas distribution industry structure182
5.24.2 Metering regulatory environment and smart meter market developments .183
5.25 Slovakia 184
5.25.1 Electricity and gas distribution industry structure184
5.25.2 Metering regulatory environment and smart meter market developments .185
5.26 Slovenia 185
5.26.1 Electricity industry structure and metering regulatory environment ..185
5.26.2 Smart metering projects....186
5.27 Spain187
5.27.1 Electricity and gas distribution industry structure187
5.27.2 Metering regulatory environment 188
5.27.3 Smart metering market developments..189
5.28 Sweden.191
5.28.1 Electricity distribution industry structure....191
5.28.2 Metering regulatory environment 192
5.28.3 Smart metering market developments..193
5.28.4 The outcome of a regulation driven rollout 196
5.29 Switzerland 198
5.29.1 Electricity distribution industry structure....198
5.29.2 Metering regulatory environment and smart meter market developments .199
5.30 United Kingdom...200
5.30.1 Electricity and gas industry structure....200
5.30.2 Metering regulatory environment 203
5.30.3 Great Britain's planned nationwide smart metering system ....204
5.30.4 Early smart meter deployments ..206
5.30.5 Smart metering in Northern Ireland and the Channel Islands .207
6 Case studies: Smart metering projects in Europe....209
6.1 Enel..209
6.1.1 The Telegestore project in Italy...209
6.1.2 New generation of smart meters and system solutions.211
6.1.3 Endesa's smart metering project in Spain .211
6.1.4 Smart meter rollout plan for Romania ...212
6.2 ERDF212
6.2.1 The Linky Programme..213
6.2.2 System development and full-scale pilot ...215
6.3 E.ON 216
6.3.1 Sweden and Finland: Smart meter rollout and customer engagement pilot....217
6.3.2 Spain and the UK: Complete rollouts before 2020 ...219
6.3.3 Germany and Central Europe: Pilot projects and retail propositions220
6.4 Iberdrola ....221
6.4.1 The PRIME project ..222
6.4.2 Smart metering rollout in Spain ..222
6.5 British Gas .223
6.5.1 Corporate strategy for smart metering..224
6.5.2 Early smart meter deployments ..224
6.6 ESB..225
6.6.1 Results from communication technology trials....226
6.6.2 Results from consumer behaviour trials227
6.6.3 Results from cost benefit analysis....228
6.7 Fortum ..231
6.7.1 Smart meter rollout in Sweden....232
6.7.2 Smart meter rollout in Finland233
6.7.3 Smart meter rollout in Norway ....234
6.8 Eandis...234
6.9 Energa ..236
6.10 Eesti Energia...237
7 Market forecasts and trends ..239
7.1 Market drivers and restraints ...240
7.1.1 Macroeconomic factors240
7.1.2 Political environment ....242
7.1.3 Competitive environment ..244
7.1.4 Technology and standards ....245
7.2 Smart metering market forecast ...246
7.2.1 Geographical markets..247
7.2.2 Capital expenditure forecast ..252
7.3 Technology trends....255
7.4 Industry analysis..256
Glossary 259

List of Figures

Figure 1.1: Top 25 energy companies, by turnover (EU27+2 2011) .4
Figure 1.2: Electricity generation and consumption data (EU27 2011) ..5
Figure 1.3: Electricity market statistics (Europe 2012) ...7
Figure 1.4: Electricity market statistics (Europe 2012) ...8
Figure 1.5: Top 25 electricity DSOs (EU27+2 2012)....10
Figure 1.6: Top 25 electricity DSOs (Southeast and East Europe 2012) ...12
Figure 1.7: Gas market statistics (EU27+2 2012) ...14
Figure 1.8: Top 25 gas DSOs (EU27+2 2012) ...15
Figure 1.9: Major district heating markets (EU27+2 2008) ....16
Figure 2.1: Plug-in hybrid electric vehicle.23
Figure 2.2: Smart metering infrastructure.25
Figure 2.3: Examples of smart electricity meters26
Figure 3.1: Overview of power grid infrastructure....38
Figure 3.2: Standard model for smart grid communication network ....39
Figure 3.3: Alternative model for smart grid communication network ..40
Figure 3.4: Technical comparison of key PLC technology standards...43
Figure 3.5: Members of the G3-PLC Alliance by industry .47
Figure 3.6: Members of the PRIME Alliance by industry ...49
Figure 3.7: Members of the Meters & More Association by industry ....50
Figure 3.8: Selected members of HomePlug Powerline Alliance by industry .53
Figure 3.9: Top 25 semiconductor companies and smart grid technology support.59
Figure 4.1: Energy meter vendor company data (World/Europe, FY2011)68
Figure 4.2: Landis+Gyr smart metering product portfolio (Europe 2012) .69
Figure 4.3: Itron smart metering product portfolio (Europe 2012) ...74
Figure 5.1: Regulatory policies for smart meter rollouts, by country (EU27+2 Q3-2012) 120
Figure 5.2: Top 25 smart metering projects in EU27+2 countries (Q3-2012) ...122
Figure 5.3: Top 10 electricity and gas DSOs in Austria (2012)..124
Figure 5.4: Electricity and gas network operators in Belgium (2012) .127
Figure 5.5: Electricity DSOs and smart meters under contract in Bulgaria (2012) .129
Figure 5.6: Top 5 DSOs in the Czech Republic (2012) ...133
Figure 5.7: Top 10 electricity DSOs in Denmark (2012) ..135
Figure 5.8: Major SM projects in Denmark (October 2012)..137
Figure 5.9: Major SM projects in Estonia (October 2012) ....139
Figure 5.10: Top 10 electricity DSOs in Finland (2012)...141
Figure 5.11: Top 25 SM contracts in Finland (September 2012) ...142
Figure 5.12: Top 50 electricity DSOs in Germany (2012)149
Figure 5.13: Top 5 DSOs in Hungary (2012) ....155
Figure 5.14: Top 15 electricity and gas DSOs in Italy (2012) ....161
Figure 5.15: Electricity and gas DSOs in the Netherlands (2012)..170
Figure 5.16: Top 10 electricity DSOs in Norway (2012) ..174
Figure 5.17: Top 10 full-scale SM projects in Norway (Q3-2012)...177
Figure 5.18: Electricity DSOs in Poland (2012) 179
Figure 5.19: Top 5 DSOs in Portugal (2012) ....181
Figure 5.20: Top 5 DSOs in Romania (2012)....183
Figure 5.21: Electricity DSOs in Slovenia (2012)...186
Figure 5.22: Major electricity and gas DSOs in Spain (2012)....188
Figure 5.23: Top 10 electricity DSOs in Sweden (2012)..192
Figure 5.24: SM contracts awarded by top 10 DSOs in Sweden...194
Figure 5.25: SM vendor selection of medium sized DSOs in Sweden195
Figure 5.26: Features of smart meters in Sweden (2011) ....196
Figure 5.27: Communication technologies of smart meters in Sweden ..197
Figure 5.28: Top 10 electricity DSOs in Switzerland (2012) .199
Figure 5.29: Electricity DSOs in the UK (2012).201
Figure 5.30: Gas DSOs in the UK (2012) 202
Figure 5.31: Estimated electricity and gas retailer market shares in the UK (2012) ....202
Figure 6.1: Telegestore annual operational data in Italy (2011)210
Figure 6.2: Conceptual system architecture for ERDF's smart metering system....214
Figure 6.3: E.ON smart metering status by country (Europe 2012)....216
Figure 6.4: SM contracts awarded by E.ON Sweden (2005–2007)218
Figure 6.5: Comparison of data collection performance for PLC/RF/GPRS .227
Figure 6.6: Calculated NPV for smart metering rollout options in Ireland228
Figure 6.7: Estimated cost for smart electricity meters and network equipment ....229
Figure 6.8: Estimated overhead costs for smart metering in Ireland ..230
Figure 6.9: Estimated capital cost for a smart metering rollout in Ireland231
Figure 6.10: Estimated cost of Energa's smart metering project ...236
Figure 7.1: Household power consumption and retail prices (EU23+2 2012) ..241
Figure 7.2: Smart meter shipments and penetration rate (EU27+2 2011–2017)....247
Figure 7.3: Smart meter shipments by country (EU27+2 2011–2017) ....249
Figure 7.4: Smart meter installed base by country (EU27+2 2011–2017)....250
Figure 7.5: Smart metering capital expenditure forecast (EU27+2 2011–2017) ....252
Figure 7.6: Estimated capital cost for some smart metering projects in Europe ....253
Figure 7.7: Breakdown of costs for smart metering projects in Western Europe ...254

To order this report:
Electrical_Equipment Industry:
Smart Metering in Europe – 9th Edition

__________________________
Contact Nicolas: [email protected]
US: (805)-652-2626
Intl: +1 805-652-2626

 

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
SYS-CON Events announced today that IceWarp will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IceWarp, the leader of cloud and on-premise messaging, delivers secured email, chat, documents, conferencing and collaboration to today's mobile workforce, all in one unified interface
In his session at @ThingsExpo, Lee Williams, a producer of the first smartphones and tablets, will talk about how he is now applying his experience in mobile technology to the design and development of the next generation of Environmental and Sustainability Services at ETwater. He will explain how M2M controllers work through wirelessly connected remote controls; and specifically delve into a retrofit option that reverse-engineers control codes of existing conventional controller systems so they don't have to be replaced and are instantly converted to become smart, connected devices.
The Internet of Things is in the early stages of mainstream deployment but it promises to unlock value and rapidly transform how organizations manage, operationalize, and monetize their assets. IoT is a complex structure of hardware, sensors, applications, analytics and devices that need to be able to communicate geographically and across all functions. Once the data is collected from numerous endpoints, the challenge then becomes converting it into actionable insight.
With the proliferation of connected devices underpinning new Internet of Things systems, Brandon Schulz, Director of Luxoft IoT – Retail, will be looking at the transformation of the retail customer experience in brick and mortar stores in his session at @ThingsExpo. Questions he will address include: Will beacons drop to the wayside like QR codes, or be a proximity-based profit driver? How will the customer experience change in stores of all types when everything can be instrumented and analyzed? As an area of investment, how might a retail company move towards an innovation methodolo...
SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
Consumer IoT applications provide data about the user that just doesn’t exist in traditional PC or mobile web applications. This rich data, or “context,” enables the highly personalized consumer experiences that characterize many consumer IoT apps. This same data is also providing brands with unprecedented insight into how their connected products are being used, while, at the same time, powering highly targeted engagement and marketing opportunities. In his session at @ThingsExpo, Nathan Treloar, President and COO of Bebaio, will explore examples of brands transforming their businesses by t...
SYS-CON Events announced today that Pythian, a global IT services company specializing in helping companies leverage disruptive technologies to optimize revenue-generating systems, has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Founded in 1997, Pythian is a global IT services company that helps companies compete by adopting disruptive technologies such as cloud, Big Data, advanced analytics, and DevOps to advance innovation and increase agility. Specializing in designing, imple...
Through WebRTC, audio and video communications are being embedded more easily than ever into applications, helping carriers, enterprises and independent software vendors deliver greater functionality to their end users. With today’s business world increasingly focused on outcomes, users’ growing calls for ease of use, and businesses craving smarter, tighter integration, what’s the next step in delivering a richer, more immersive experience? That richer, more fully integrated experience comes about through a Communications Platform as a Service which allows for messaging, screen sharing, video...
As more and more data is generated from a variety of connected devices, the need to get insights from this data and predict future behavior and trends is increasingly essential for businesses. Real-time stream processing is needed in a variety of different industries such as Manufacturing, Oil and Gas, Automobile, Finance, Online Retail, Smart Grids, and Healthcare. Azure Stream Analytics is a fully managed distributed stream computation service that provides low latency, scalable processing of streaming data in the cloud with an enterprise grade SLA. It features built-in integration with Azur...
SYS-CON Events announced today that Micron Technology, Inc., a global leader in advanced semiconductor systems, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Micron’s broad portfolio of high-performance memory technologies – including DRAM, NAND and NOR Flash – is the basis for solid state drives, modules, multichip packages and other system solutions. Backed by more than 35 years of technology leadership, Micron's memory solutions enable the world's most innovative computing, consumer,...
Contrary to mainstream media attention, the multiple possibilities of how consumer IoT will transform our everyday lives aren’t the only angle of this headline-gaining trend. There’s a huge opportunity for “industrial IoT” and “Smart Cities” to impact the world in the same capacity – especially during critical situations. For example, a community water dam that needs to release water can leverage embedded critical communications logic to alert the appropriate individuals, on the right device, as soon as they are needed to take action.
As more intelligent IoT applications shift into gear, they’re merging into the ever-increasing traffic flow of the Internet. It won’t be long before we experience bottlenecks, as IoT traffic peaks during rush hours. Organizations that are unprepared will find themselves by the side of the road unable to cross back into the fast lane. As billions of new devices begin to communicate and exchange data – will your infrastructure be scalable enough to handle this new interconnected world?
While many app developers are comfortable building apps for the smartphone, there is a whole new world out there. In his session at @ThingsExpo, Narayan Sainaney, Co-founder and CTO of Mojio, will discuss how the business case for connected car apps is growing and, with open platform companies having already done the heavy lifting, there really is no barrier to entry.
With the Apple Watch making its way onto wrists all over the world, it’s only a matter of time before it becomes a staple in the workplace. In fact, Forrester reported that 68 percent of technology and business decision-makers characterize wearables as a top priority for 2015. Recognizing their business value early on, FinancialForce.com was the first to bring ERP to wearables, helping streamline communication across front and back office functions. In his session at @ThingsExpo, Kevin Roberts, GM of Platform at FinancialForce.com, will discuss the value of business applications on wearable ...
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
The Internet of Things (IoT) is about the digitization of physical assets including sensors, devices, machines, gateways, and the network. It creates possibilities for significant value creation and new revenue generating business models via data democratization and ubiquitous analytics across IoT networks. The explosion of data in all forms in IoT requires a more robust and broader lens in order to enable smarter timely actions and better outcomes. Business operations become the key driver of IoT applications and projects. Business operations, IT, and data scientists need advanced analytics t...
Akana has announced the availability of the new Akana Healthcare Solution. The API-driven solution helps healthcare organizations accelerate their transition to being secure, digitally interoperable businesses. It leverages the Health Level Seven International Fast Healthcare Interoperability Resources (HL7 FHIR) standard to enable broader business use of medical data. Akana developed the Healthcare Solution in response to healthcare businesses that want to increase electronic, multi-device access to health records while reducing operating costs and complying with government regulations.
For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducted a live demonstration of how quickly application development can happen when the need to comply wit...
The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.